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Summary 

Ever since Linux distributions started to report “steal time” in various tools, it has been causing grief and 
confusion among Linux experts with a background in dedicated server configurations. Extreme values of 
steal time certainly justify further investigation, like any extreme values for performance metrics should 
do. While it is true that resource contention may show as steal time, it is too simple to consider any non-
zero steal time as evidence of damage and halt diagnostics while claiming a “hypervisor problem.”  

This paper explains the factors that make up steal time as perceived by Linux, and introduces the zVPS 
screens and reports that help to explain and sometimes predict steal time. 

Conclusion 

In a shared resource environment, there is always a chance that a server must wait for its resources. Some 
amount of latency is unavoidable. This is the consequence of sharing a resource. It is unrealistic to expect 
no latency in access to a shared resource. A high average utilization leads to higher average latency, but 
large configurations with many CPUs can run at higher utilization without excessive increase in latency. 

With Linux on z/VM, the CPU resources are shared both at virtual machine level and at LPAR level. At both 
levels, over-commit of resources leads to contention and will cause latency in getting the CPU resources. 
Metrics in zVPS reports are needed to determine whether reported steal time is a true concern and would 
need to be addressed. 

Because some of the metrics are collected by state sampling and system wide averages, steal time can 
only be predicted with limited accuracy. The numbers can be used however to provide a range of steal 
time percentage that is reasonable for a given configuration and utilization. 

The focus on steal time may still be misleading. The real question is whether the service levels for the 
applications can be met by the platform. When Linux on z/VM can deliver response times using a shared 
fast CPU and some wait time, then that could be an adequate solution for the business. The desire to have 
a fast CPU and not having to share it with others is understandable, but may not be attractive from a 
business point of view. 
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Introduction 

The diagram below is used to introduce the various components of time from the Linux guest perspective, 
and explain the relation with metrics that represent CPU resources in the system. 

 

The following sections show various zVPS displays during execution of a performance experiment. 

ESALNXS – Linux Performance View 

The top section in the chart represents the Linux components of time.  

user CPU usage to run the actual application program 

syst System calls issued by the program (eg file system operations, creating processes, etc) 

softirq Second level interrupt handler (eg network I/O) 

kernel Interrupt handling (eg disk I/O) 

iowait Waiting for disk I/O to complete 

idle No work to do 

steal Anything not covered by the other components 

These metrics can be found for example on ESALNXS for the virtual server. ESALNXS here shows1 a total of 
18% consisting of 9.5% attributed to processes (2.6% plus 6.9%) and 8.4% for Linux overhead (0.7% plus 
7.7%).  Together with the I/O wait of 74.1% this represents 92% of the time. The remaining 8.0% is 
reported as steal time (this is how Linux computes it).  

  
ESALNXS 2/2           <-- Processor Pct Util -> <CPU% Overhead>  I/O 
Time     Node     CPU Total User Nice Syst Idle Krnl  IRQ Steal Wait 
-------- -------- --- ----- ---- ---- ---- ---- ---- ---- ----- ---- 
08:05:00 roblx1   Tot  18.0  2.6    0  6.9    0  0.7  7.7   8.0 74.1 

                                                
1 The examples were done with “prorate” disabled in ZWRITE. When prorate is enabled, Linux overhead is distributed 
proportionally over the processes. This is useful for charge back purposes, but makes it a bit harder to match the 
various numbers as we want to do here. 
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Most Linux tools normalize CPU usage to 100%. The zVPS percentages are related to a full CPU. In this test 
the guest was using only one virtual processor, the total in ESALNXS is N x 100% (N is the number of 
virtual processors).  

ESAUSP2 – z/VM User Performance View 

The next layer in the chart represents the CPU usage of the guest as measured by z/VM, and reported in 
ESAUSP2. The “iowait” and “idle” portions do not represent CPU usage, so during those periods the virtual 
processors of the guest do not run. From a z/VM point of view, all Linux CPU usage (user, system and 
overhead) is “Emulation Time” where the guest is running on the real CPU undisturbed at full speed. 

 
ESAUSP2 0/3       <Processor> 
         UserID   <-use CPU%> 
Time     /Class   Total  Virt 
-------- -------- ----- ----- 
08:05:00 ROBLX1   19.22 18.59 

 

ESAUSP2 for this interval shows 18.6% Emulation Time (“Virt”) which corresponds to the 18% that Linux 
reports in ESALNXS. The difference can be explained by the code Linux has to run before it can actually 
measure time.2 Granularity of time as reported here (in units of 10 ms) may cause some skew in reporting. 

When looking at 1-minute intervals and fairly short peaks of activity, some discrepancy between Linux and 
z/VM metrics can be noticed because the data collection intervals are slightly shifted to ensure that Linux 
data arrives early enough to be picked up for the monitor interval. The effects average out over time, but 
can be confusing when studying data for short periods. 

The difference between “Total” and “Virt” (0.6%) is the CP Time component. This CPU usage not visible as 
such in Linux. It represents z/VM functions on behalf of the workload in this guest. It is sometimes called 
virtualization overhead because part of it is to isolate guests from each other and from the actual 
hardware. However, part of the CP work is for functions on behalf of the guest so the guest does not have 
to do it. For example when the guest is using a VNIC connected to a VSWITCH, Linux CPU usage is less 
than when the guest would be using dedicated OSA devices. The CPU usage by CP is both for virtualization 
of the resource and for working with the real hardware devices. 

 
ESAXACT – z/VM User Wait States 

The third layer represents metrics that explain why a virtual CPU is not running. The most obvious reason 
would be when the virtual server has no work to do for the virtual processor. It could be (briefly)3 waiting 
for an I/O operation to complete, or waiting for a network data or for a timer to expire. The other reason is 
“User Wait” which means the guest has dispatched work on its virtual CPU and would like it to run, but for 
some reason it currently does not run. Those reasons are shown on ESAXACT. The metrics in ESAXACT are 
based on state sampling by CP. These 1-second samples do not provide the same accuracy as we get from 

                                                
2 Modern CPUs rely on various levels of cache around the CPU to run at clock speed. It is fair to assume that when a 
virtual CPU is dispatched by z/VM, these first instructions may take longer because the instructions are not yet in the 
CPU cache. The metrics and tuning options in this area deserve a research paper of their own. 
3 The difference between idle and dormant is based on how long the virtual CPU is not using any resources. Many 
applications and middleware components use “polling” techniques. This means that a Linux guest with no actual 
workload will still issue very frequent timer requests and never be true idle according to z/VM. 
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the CPU timer metrics with most state changes happening 10,000 times more often. Although it is possible 
to sample virtual CPU state more often, the rough numbers are typically enough to understand what is 
happening in the system. 

 
ESAXACT 2/2       <-Samples-> <---Percent non-dormant------->                  
         UserID          Pct               E-  T-     Tst      D- <---CPU%---> 
Time     /Class   Total  In Q Run Sim CPU SVM SVM  CF Idl Oth SVM Assign  Used 
-------- -------- ----- ----- --- --- --- --- --- --- --- --- --- ------ ----- 
08:05:00 ROBLX1     120  50.0  20   0  10   0   0   0  70   0   0    3.8  19.2 

 

In this case ESAXACT shows the virtual server actually has 2 virtual CPUs (120 samples per minute). Since 
the virtual CPUs were in queue 50% of the time, we must conclude that one virtual CPU was dormant (it 
was actually varied offline in Linux). The other percentages break down the non-dormant portion again. In 
this case 20% of the time the processor was running, 10% waiting for CPU (competing with other virtual 
machines to be dispatched on one of the logical CPUs of z/VM) and 70% “test idle” wait. This represents 
brief periods where the guest did not have work to do, but after a very short time needed CPU resources 
again (eg waiting for a disk I/O to complete, or waiting for a timer interrupt). 

An alternative presentation of the state samples is shown below. This screen does not normalize the wait 
states by non-dormant portion and makes some numbers more obvious when virtual processors are not 
dormant all the time. 

 
ESAWAIT4 0/1      <--------- Virtual CPU State Percentage --------->  Poll            
Time     User       Run CPUwt  CPwt Limit  IOwt PAGwt Othr Idle Dorm  Rate CPU% ms/tx 
-------- -------- ----- ----- ----- ----- ----- ----- ---- ---- ---- ----- ---- ----- 
08:05:00 ROBLX1    20.0  10.0     0     0     0     0    0 70.0  100 622.3 19.2  0.31 

 

An interesting metric here is the “poll rate” which shows the number of times per second the guest went 
idle and woke up again. The 622 here means that on average 622 times per second the guest needs to get 
in line to be dispatched and consume some CPU cycles (0.31 ms on average). Even the slightest latency 
will add up to something significant when you encounter that 622 times per second. From the 10% CPU 
wait above, we can conclude that the average latency is around 0.15 ms (100 ms / 622). 

ESACPUU – LPAR Wait State 

Many installations also share the real CPUs among multiple LPARs. This means that when z/VM dispatches 
work on one of the logical CPUs of the LPAR, there will be some delay before PR/SM dispatches the logical 
CPU on a real CPU. This “involuntary wait” or “LPAR steal” shows on ESACPUU. 

 
ESACPUU 1/3       <----CPU (percentages)----------> <External (per second)> 
         <--CPU-> Total  Emul <-Overhd>  <CPU Wait> <--Page---> <--Spool--> 
Time     Type  ID  util  time User Syst  Idle Steal  Read Write  Read Write 
-------- ---- --- ----- ----- ---- ---- ----- ----- ----- ----- ----- ----- 
08:05:00 CPU  Tot  55.9  46.9  5.8  3.3 131.0  13.0     0     0     0     0 

 

The total LPAR Steal here is 13%. When the LPAR waits 13% to consume 55.9% of CPU, we divide the two 
numbers to determine that it takes about 25% extra time for the system to get the work done. Because 
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the logical CPUs are still idle 130% of the time, the system does eventually get its resources and the LPAR 
does not starve. 

Estimating Steal Time 

Using the metrics from the different levels of virtualization and resource sharing, we can try to explain 
steal time observed in Linux for the sample data shown above. 

On the Linux level, the system can account 18% of CPU while z/VM actually spends 19.2% of CPU for the 
guest (ESAUSP2). This difference already explains an elongation of 1.1, which corresponds to a steal time 
of 1.2% measured by Linux. 

From the LPAR data, we know that contention on LPAR level will on average delay CPU usage by a factor 
1.23 in this case. Lacking any other information, our best guess is to assume our server is affected in the 
same way. That means the 19.2% CPU (the usage as determined by the z/VM metrics) will take 1.23 times 
as long, so 23.6% of time. The difference of 4.4% would be reported as steal time by Linux. 

The final component is the delay caused by CPU wait in z/VM. The ESAXACT data in this case suggests an 
elongation of 1.5 but this is really a worst case estimate. The reason is that the Linux system is polling4 
which makes the server queue for CPU resources very often when idle, even when it doesn’t really need 
CPU resources. When the Linux system is not idle, these timer requests are handled during the time slice 
itself and do not cause any CPU wait. 

Based on these factors, we conclude that it would take between 23.6% and 35.4% of time to deliver the 
CPU resources for the guest. This means the steal time measured by Linux would be between 5.6% and 
17.4%. The ESALNXS data shows 8% which is well within this wide range. 

When we repeat the measurements with a workload that is entirely CPU constrained (so does not leave 
any idle time with polling) the wait state samples are more accurate and we can determine steal time 
better. A workload that depends entirely on CPU resources is also more affected by steal time than a 
workload that is waiting for I/O most of the time. 

Implications of Steal Time 

Although a latency of a factor 1.4 may sound dramatic, it is more important to understand the impact of 
that latency on the throughput of the server. The mixed workload is waiting much more on I/O than on 
CPU, so even if we had dedicated CPU resources for the workload, the performance gain would be at most 
8%. Considering that System z CPUs are typically faster than other platforms, it might still be attractive to 
accept 8% latency for getting the CPU resources in a shared resource environment. In a real business 
environment, what matters is to meet the required response time at lowest cost. 

Concern about latency without looking at processor speed is like complaining about boarding times for a 
long flight: certainly if you would walk the way you could start right now rather than wait for an hour. But 
the actual response time of the transaction is likely much worse. 

                                                
4 In addition to the I/O test program used to generate this workload, the Linux guest is also running a popular database 
server which keeps track of time using a 1 ms timer interrupt even when the system is idle. This is a rather 
unfortunate design choice to address issues that have been resolved already in current Linux kernels. 


