Large Virtualization Case Studies (What happens when the honey moon is over?) (suse 2014)

Barton Robinson Velocity Software Barton@VelocitySoftware.com

Copyright 2011 Velocity Software. Inc. All Rights Reserved. Other products and company names mentioned herein may be trademarks of their respective

Planning for 1000 virtual servers

Objectives

- Capacity Considerations
- Profiling possibilities?
- Case Studies
 - What successful installations are doing
 - How installations "save boatloads of money"
- Capacity Planning for:
 - Consolidation
 - Workload growth
- LPAR Configurations
- Storage ROTs (WAS, Oracle, SAP)

What is large virtualization?

Resource Sharing

- Learn to share (hard for my kids when they were 2)
- Performance matters

Metrics – Processor overcommit

- Servers per "box" (100-1000)
- Servers per LPAR (80-200)
- Servers per IFL (5-20
- VCPU per IFL (10-40)

Metrics – Storage overcommit

People comittment

• Systems support per server (one per 200-800 servers)

Capacity Planning Processor Overview

Processor requirements

- CECs (DR, floor space)
- IFLs (CPU capacity)
- LPARs (Storage capacity, separation)

Considerations for a better TCO

- Software is licensed per core / IFL
- 95% IFL (Effective) utilization provides the lowest cost solution
- One installation replaced 30 "oracle servers" with one IFL
- One installation gets hardware & system software for "free"

Plan for:

- CPU Capacity
 - Know your target utilization (Ghz is Ghz, Mips is meaningless)
 - Know target capacity requirement
- Number of LPARs -

Term: Processor Overcommit, higher is better

Number of virtual cpus per IFL

Critical concepts (Objective is meeting SLA)

- z/VM on z196, z9, z10 has a LOW MP effect
- One CEC with 2 IFLs has MORE capacity than 2 CECs with one IFL
- One IFL runs 40-50%, 2 IFLs run 50-80%, 20 IFLs run 95%
- 95% IFL utilization lowest cost (TCO)
- An IFL over 3 years costs about \$100,000
- Two IFLs at 30% cost \$100,000 more than ONE IFL at 60%.

• Processors at low utilization are MORE expensive

Capacity Planning – The Job (quick digression)

Capacity Planning is an art and an OLD profession

- Doing it well saves the company money (high utilization)
- Not doing it saves the company money (people, tools)

Capacity Planning objective – High utilization

- Ensure enough resources (storage) are available
- Not a lot of capacity planning on distributed side

When is capacity planning justified?

- How much can be saved if targeting 1,000 servers?
- 10 IFLs 10% savings is \$100K
- 100 IFLs

Bank in South Africa presentation – "Open Systems"

- Outages are not necessary very visible, impact is minimal
- Capacity is as a rule under utilized
- Resources not shared
- "Monitoring tools only for recreational purposes"

What is different under z/VM?

- Resources shared
- Resources utilized to the maximum

Status:

- 12 IFLs, 240 guests, 420 virtual CPUs
- 35 VCPU per IFL
- "<u>http://www.velocitysoftware.com/present/zvpsnedb.pdf</u>"

Configuration Topics - Processors

Higher processor utilization provides better TCO

Sharing processors with virtualization

- Multiple LPARs sharing IFLs
- Multiple servers within LPAR
- Multiple virtual CPUs within virtual server

Capacity planning questions:

What level of sharing – Linux virtual cpus per IFL What is associated overhead? What is the workload requirements?

Capacity Planning Storage Overview

Storage Consideration (to keep ifls at 95% busy)

- How much storage is required? (10-15 gb / IFL?)
- What storage tuning should / can be performed?
- What level of paging will be supported?

Storage requirements inputs

- Target Overcommit level (1:1, 2:1, 4:1?)
- (VDISK NOT PART OF OVERCOMMIT)
- Storage maximums (250GB per LPAR as of z/VM 6.2)
- Expanded Storage (20%)

Replacements? (Distributed server to z server)

• 1 to 1, 2 to 1, 1 to 2? 1 to 10?

Processor sizing

- Gigahertz is gigahertz
- "Barton's number": 1 mip is 4-5 megahertz
- Z196: 5.0 Ghz
- EC12: 5.4Ghz (BC12 4.0 Ghz)

Server Storage sizing

- Smaller is better, tuning easier, managing easier
- Cost of extra servers small

Linux Internal overhead (mp effect)

• 5-10% reduction going from 2 to 1 vcpus

Common in large successful installations:

If I can't manage it, it is not going to happen

Management Infrastructure in place (ZVPS)

Infrastructure Requirements

- Performance Management
- Capacity Planning Requirements
 - Analysis by server, by application, by user
- Operations, Alerts
- Chargeback, Accounting

Infrastructure resource consumption serious planning issue and obstacle to scalability

Costs for 1,000 Servers:

- A 2% agent requires 20 IFLs just for management
- A .03% agent requires 30% of one IFL
- (Cost of 1,000 2% agents: 20 IFLs: \$2M)

Ask the right questions!

- Data correct?
- Capture ratio?
- Cost of infrastructure?
- References.....

Performance Management Planning

Report:	ESALNXP	1	LINUX I	HOST 1	Proces	ss Sta	atist:	ics Re	port
Monitor	initial:	ized: 2	21/01/:	11 at	07:03	3:00 0	on		
node/	<-Proc	cess Id	dent->	Nice	<	CP1	J Perc	cents-	>
Name	ID	PPID	GRP	Valu	Tot	sys	user	syst	usrt
snmpd	2706	1	2705	-10	0.07	0.02	0.05	0	Q
snmpd	24382	1	24381	-10	0.04	0.02	0.02	6	0
snmpd	2350	1	2349	-10	0.04	0.02	0.02	0	0
snmpd	28384	1	28383	-10	0.14	0.10	0.04	0	0
snmpd	28794	1	28793	-10	0.09	0.09	0	0	0
snmpd	31552	1	31551	-10	0.07	0.03	0.03	\ 0	0
snmpd	11606	1	11605	-10	0.04	0.02	0.02	0	0/
snmpd	2996	1	2995	-10	0.08	0.03	0.05	0	0
snmpd	31589	1	31588	-10	0.05	0.03	0.02	0	0
snmpd	15356	1	15355	-10	0.16	0	0.16	0	0
snmpd	15413	1	15412	-10	0.10	0.08	0.02	0	0
snmpd	30795	1	30794	-10	0.05	0	0.05	0	0
snmpd	1339	1	1338	-10	0.05	0.04	0.02	0	0
snmpd	30724	1	30723	-10	0.02	0.02	0	0	0
snmpd	28885	1	28884	-10	0.06	0.02	0.04	0	0
snmpd	2726	1	2725	-10	0.13	0.08	0.05	0	0
snmpd	14632	1	14631	-10	0.02	0.02	0	0	0

SNMP on every server Consumes < .1

NO spawned processes

Agent Overhead of z10EC

Report:	ESALNXP	1	LINUX I	HOST I	Proces	ss Sta	atist:	ics Re	eport	
node/	<-Pro	cess Id	dent->	Nice	<	CP	J Pero	cents.	>	
Name	ID	PPID	GRP	Valu	Tot	sys	user	syst	usrt	
agent	8853	1	4390	0	2.24	0.01	0.02	1,38	0.83	
agent	9878	1	4657	0	1.98	0.01	0.02	1.15	0.80	
agent	6451	1	4392	0	5.68	0.03	5.59	0.03	0.02	
agent	9644	1	4392	0	2.14	0.01	0.01	1.34	0.78	
agent	7488	1	4379	0	1.42	0.01	0.01	0.84	0.56	
agent	9634	1	4362	0	1.92	0.01	0.01	1.14	0.75	
agent	5524	1	4414	0	5.22	0.04	5.14	0.03	0.02/	/
agent	7613	1	4525	0	1.44	0.01	0.02	0.88	0.53	
agent	7506	1	4388	0	1.41	0.01	0.02	0.83	0.55	
agent	6673	1	3725	0	1.41	0.01	0.02	0.83	0.55	
agent	6610	1	3680	0	1.44	0.01	0.02	0.89	0.52	
agent	6629	1	3680	0	1.51	0.01	0.01	0.90	0.59	
agent	6624	1	3677	0	1.39	0.01	0.02	0.82	0.54	
snmpd	1042	1	1041	-10	0.03	0.02	0.02	0	0	
snmpd	977	1	976	15	0.04	0.02	0.02	0	0	

Note "agent" uses little CPU, same as "snmpd" Spawned processes excessive – Need full picture

Capacity Planning for 1000 virtual servers

Company A: Consolidation project, 10,000 distributed servers

- 10 CECs (5 196, 5 ec12), 300 IFLs
- 2Q2011: 1,200 virtual servers (adding 200 per month)
- 1Q2012: 1,800 virtual servers (adding 200 per month)
- 3Q2012: 2,200 virtual servers, "ramping up soon"
- 1Q2013: 2,500 virtual servers

Company B: Consolidation and new workload

- 12 CECs, 60 LPARs, 183 IFLs
- 800 servers

Company C: Websphere

- 4 CECs (+2), 16(+4) LPARs, 60 IFLs
- 800 servers, (+100)

Company M (Oracle)

- 1 CEC, 7 LPARS, 17 IFLs -> 50 IFLs->2 CECs, 120 IFLs
- 160 (LARGE) servers (july/2012)

Installation A – Server Consolidation

Consolidation source servers

- IBM HS21 (8GB),(2x4 core, 2.5Ghz)
- IBM X3550 (4GB) (2x4 core, 2.5Ghz)
- IBM X3655 (32GB) VM (2x4 core, 2.5Ghz)
- Sun M4000 (64GB) (4x4core, 2.4Ghz)
- Sun T5140 (32GB) (2x8 core, 1.2Ghz)
- Many others

Capacity planning process for consolidation:

- Inventory server counts (10,000+)
- Tally Gigahertz used (using native SAR)
 - By server, by application
- Spec processors based on GHz consumed by workload
- Spec storage on conservative basis

Installation A Highlights

Processors

- 1 z196 (R&D)
- 4 z196 (was z10) -> NOW 4 z196, 4 EC12....

IFLs

• 58 IFLs production -> 300 IFLs

Architecture

• Two data centers, High availability

Server counts

- 1800 servers (1Q12)
- 2200 servers (2Q12)
- 2500 servers (1Q13)

Installation A – LPAR Sizing

Processors (1Q,2012):

- Z196 Lab, 18 IFLs, 2 LPARs, 4:1 Storage overcommit
- Z196(4) Production
 - 2 z/VM LPARs each, Production, Staging
 - 20-30 IFLs per CEC
 - (Some number of GP as well)
 - Disaster Recover available by shutting staging down

LPAR Sizes for Production

- 14-24 IFLs each (Shared)
- 256 GB Central each LPAR
- 24-72 GB Expanded (-> 128GB)

Installation A – Initial Project

Linux project started April, 2009

- 38 servers
- 3 IFLs

Small "traditional vm" system prior,

- skills available
- Hired one more
- Current staff including manager: 5

2500 servers now operational (1Q 2013)

Copyright 2011 Velocity Software, Inc. All Rights Reserved

Workloads: Websphere, Oracle

Users get 50 guests at a time,

• 25 on each datacenter

Growth

- Adding 200 servers per month for existing workload
 - Planned 3000 servers by 11/2012? (on target not....)
- Last years "Next" application: New oracle workload,
 - replacing 400 cores (SUN)
 - 4 TB database (12 TB / cluster)
 - Sized at 32 IFLs (12:1) (Gigahertz sizing)
 - 1 TB real storage
- This year "next" 5 Petabytes

Project: Ground up resizing

• Jvms per server, heap sizes

PERFORMANCE

Highlights of Z/VM LPARs (2012)

- 12 z10 / z196 (ramping up, 24 cecs currently)
- 183 IFLs (LPAR Overcommitt Level 288 Logical processors 1.5: 1)
- 3800 GB Cstore, 250 GB Xstore
- Five major data centers
- 800 servers (Websphere, Oracle)
 - Many servers in 30-40GB range
- 200 Servers per FTE is working number

Production LPARS

10-32 IFLs Each (Run out of 250GB storage with large servers)150GB – 250GB Central Storage20-100 servers per LPAR

Installation B – z Overview (Big CPU Picture)

Repor Monit	t: ES. or in	ALPAN itia	RS I lized: 1	logical	Partitio 0 at 16:0	on Sur 07 : 10	nmary on 209	97 seri	al 374E:	: 11/0		
		Co Phys	omplex Dispato	 -> < ch	Logi	cal Pa Virt	artitio <%Ass:	on> igned>	<-Assi <lp< th=""><th>Proce Type</th><th></th><th></th></lp<>	Proce Type		
Time	(CPUs	Slic	e Name	Nbr	CPUs	Total	Ovhd	Weight			
16:09	:00	37	Dynami	.c Tota	ls: 0		3146	25.0	3000			
			-	L43	19	6	574.6	0.6	148	IFL	<	- 95%
				C41	10	1	100.0	0.0	Ded	ICF		
				C42	11	1	96.1	0.1	850	ICF		
				C43	14	1	99.7	0.0	Ded	ICF		
				C44	15	1	0.8	0.1	150	ICF		
				P41	1	7	422.1	3.2	717	CP		
				P44	9	2	43.4	0.2	70	CP		
				T41	4	5	197.5	0.5	193	CP		
				T44	7	2	9.8	0	20	CP		
				L41	17	22	1557	19.6	777	IFL	←-	71%
				L42	18	2	44.7	0.8	75	IFL		
Total	s by I	Proce	essor ty	vpe:								
<	(CPU	>	<-Shar	ed Proces	ssor]	ousy>					
Туре	Count	Ded	shared	total a	assigned	Ovhd	Mgmt					
CP	 6	0	6	584.7	573.3	3.6	7.8					
IFL	27	0	27	2220	2176.3	21.0	22.9	← -80%	of IFLs			
ICF	3	0	3	297.8	296.5	0.1	1.1					
ZIIP	1	0	1	99.9	99.5	0.3	0.1					

CEC "01" for one day, 38 IFLs Storage overcommit: none Processor overcommit: 5:1 (5 linux vcpu / IFL) OPTIMAL WHITE SPACE!!!!

PROVEN PERFORMANCE

CEC "13" for one day, 38 IFLs

• 30 IFLs consumed is 80% busy

Storage overcommit: none Processor overcommit: 5:1

Both CECs for one day, 76 IFLs Room for growth or consolidation

Balancing workload across CECs?

Highlights (POC 2005ish)

- 4 z196 (+1), in house DR
- 60 IFLs
- 16 LPARS (+4 in 6 months)
- Two data centers, High availability
- 675 servers (Websphere) -> 800 servers
- Serious chargeback requirements

Production LPARS

4 production LPARs, 400GB / 90 GB ExStore (~20%) Storage Overcommitt: 560gb / 490gb = 1.15

TEST/Dev LPARS

PERFORMANCE

Installation C – Overcommit

IFLs: 55 (-5) (Went from z10 to z196)

675 servers (Websphere)

- 12 servers per IFL (was 10)
- 1030 Virtual CPU (25:1)

Storage

- 970 (+100) GB Central
- 184 GB Expanded (~20%) (IBM Recommendation 2-4GB BAD!)

Copyright 2011 Velocity Software, Inc. All Rights Reserved

- Virtual storage: 1600GB (+300)
- Overcommit (overall): 1.3 to 1

4 Year project to date (2012)

- POC summer 2008
- Two VM/Linux Systems programmers

Processors:

- 1 z10 EC, 17 IFLs
- 7 lpars, 17 virtual cpus each (Worst Case)
- 560GB Real storage / 92 GB Expanded (~15%)
- DR site available

Storage – data on FCP (30TB), systems on ECKD

Linux Servers

- 120 servers (Big, ORACLE)
 - 7 servers per IFL
- 395 vcpus
 - (23:1 overcommit)
- 4gb-40gb
 - (1 / 2 size from original SUN servers)
- 974 GB Server storage
 - (1.5 : 1 overall overcommit)
 - 8GB per server???

Zones separated by LPAR

- Development
- Validation (Quality Assurance)
- Production (gets the resources when needed)

Workload zones (3 tier, by LPAR)

- Presentation
- Data (Oracle)
- Application (WAS)
- All heavy hitting (data, application) moved/moving to "z"

Installation M – Z Production LPAR Overview

LPAR "A" Development

- oracle,
- 110gb Central / 22gb Expanded, (~20%)
- 30 servers, 100 vcpus
- 30 page packs 3390-9

LPAR "1" Application

- WAS,
- 180gb Central / 40gb Expanded
- 20 servers, 80 vcpus
- 60 page packs 3390-9,

LPAR "4" Data

- Oracle
- 130gb Central / 24gb Expanded

OVEN PERFORMANCE

Installation M – LPAR Sizing

- 17 IFLs, 7 Ipars, 17 vcpus each, 7:1 overcommit
- Overhead significant from real processor overcommit

Installation M – Z Growth

Processors: Over 4 years

- Z9, 11 IFLs moved to z10 17 IFLs
- Moved to Z196, 25 IFLs (doubling capacity)
- Moved to 40 IFLs....
- Moved to 2 EC12s (50 IFLs)

Appl Developers see "pretty good performance"

- Can we move too?
- Always issues on "other side"

Workload Growth

- Adding 110 Oracle databases
- Replacing 32 Solaris Servers (120 cores)
 - "Server from Hell" had 30 databases on it

2011 status

- We have added a total of 154 z/Linux guests.
- We have turned a lot of these into Enterprise guests meaning in some cases we have multiple JVMs on a guest as well as multiple Oracle Data bases on a single guest.
- The majority of the guests are Oracle Data base guests ranging from 500MB to 15TB in size for a single Data base.
- We have also brought over multiple WAS servers. Other than using a lot of Memory and DASD storage things seem to be running well.

Velocity Software Performance Management

• Instrumentation Requirements

- Performance Analysis
- Operational Alerts
- Capacity Planning
- Accounting/Charge back
- Correct data
- Capture ratios
- Instrumentation can NOT be the performance problem

A scalable z/VM Performance Monitor

Traditional model (1989)

ZMON: Real time analysisUses Standard CP Monitor Real Time Analysis

ZMAP: Performance Reporting Post Processing Creates Long Term PDB PDB or monwrite data input

PDB (Performance DataBase)

Complete data By Minute, hour, day Monthly/Yearly Archive

PERFORMANCE

Linux and Network Data Acquisition

Copyright 2011 Velocity Software, Inc. All Rights Reserved

Add Enterprise Support for capacity planning tools

What we're doing for Capacity Planning

CPU by lpar by Processor type CPU BY userclass

39

Copyright 2010 Velocity Software, Inc. All Rights Reserved.

See what we're doing for Capacity Planning

- VelocitySoftware.com
- See the demo

Demo System V4

Demo	12/03/13	05:31	044B42-0	22.30%			-
		Lin	ux Nodes (z	/VM-Guest	s)		
	suselnxl	83.08%					-
	roblx1	0.59%					
	broblx1	0.59%					
	redhat5x	0.58%					
	redható	0.54%					
	slesllx	0.47%					-
							 1.0

Demo System V3.5

DemoV3	12/03/13	05:31	044B42-0	22.30%		1
		Lin	ux Nodes (z	/VM-Gue	sts)	
	suselnxl	83.08%				
	broblx1	0.59%				
	roblx1	0.59%				
	redhat5x	0.58%				
	redható	0.54%				
	slesllx	0.47%				-

See what we're doing for Capacity Planning Monthly charts now easily viewed

Copyright 2010 Velocity Software, Inc. All Rights Reserved.

See what we're doing for Capacity Planning CEC Utilization for January

zVIEW - Velocity Software - VSIVM4 Performance Displays for zVM and Linux on System z

See what we're doing for Capacity Planning DEMO LPAR Utilization for January

zVIEW Version 4130

zVIEW - Velocity Software - VSIVM4 Performance Displays for zVM and Linux on System z

Capacity Planning Metrics

Processor Ratios:

- LPAR logical processors per real processor (LPAR Overhead)
- Linux virtual processors per real (Linux overhead)

Storage ratios

- Storage per processor
- Expanded storage per Real storage
- Overcommit ratios

Servers per processor

• How many distributed servers replaced per IFL?

Capacity Planning Summary

1000 servers has been done

- Management required.
- Issues are "driving too fast to stop for gas"
 - Saving too much to figure out where we're at
 - Do a capacity plan, but don't have time to review accuracy (2 years later)

Processors:

- Gigahertz are gigahertz
- Processors highly utilized and shared save money

Copyright 2010 Velocity Software, Inc. All Rights Reserved

Storage: No good guidelines

- Oracle and SAP are usually larger than WAS
- Expanded storage should follow the "Velocity best practices"

"I don't have time to see any crazy salesman; I have a battle to fight."

Copyright 2006 Velocity Software, Inc. All Rights Reserved. Other products and company names mentioned herein may be trademarks of their respective